Characterization of 24 polymorphic microsatellite markers for Silene nutans, a gynodioecious-gynomonoecious species, and cross-species amplification in other Silene species Cécile Godé, Pascal Touzet, Hélène Martin, Emna Lahiani, Lynda F. Delph & Jean-François Arnaud

Conservation Genetics Resources

ISSN 1877-7252 Volume 6 Number 4

Conservation Genet Resour (2014) 6:915-918 DOI 10.1007/s12686-014-0240-6

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

MICROSATELLITE LETTERS

Characterization of 24 polymorphic microsatellite markers for *Silene nutans*, a gynodioecious–gynomonoecious species, and cross-species amplification in other *Silene* species

Cécile Godé · Pascal Touzet · Hélène Martin · Emna Lahiani · Lynda F. Delph · Jean-François Arnaud

Received: 9 May 2014/Accepted: 2 June 2014/Published online: 13 June 2014 © Springer Science+Business Media Dordrecht 2014

Abstract *Silene nutans* (Caryophyllaceae) is a rare, vulnerable plant species that exhibits gynodioecy, containing both female and hermaphroditic individuals in natural populations. We developed and characterized 24 novel polymorphic microsatellite markers from next-generation sequencing to gain insights into the mating system and population-genetic structure of this species. In 36 individuals from three populations, the number of alleles and expected heterozygosity ranged from 5 to 30 and from 0.156 to 0.903 respectively. Departures from panmixia were found for 58.33 % of the loci with a mean multilocus F_{1s} estimate of 0.232, which is expected in a self-compatible species exhibiting a mixed-mating system. Cross-species amplification was examined among eight additional *Silene* species and

Electronic supplementary material The online version of this article (doi:10.1007/s12686-014-0240-6) contains supplementary material, which is available to authorized users.

L. F. Delph Department of Biology, Indiana University, Bloomington, IN 47405, USA was successful for 7–19 loci, depending on the taxa. Overall, these newly developed microsatellite markers exhibited a high level of polymorphism, which will facilitate paternity analyses and fine- and large-scale population-genetic studies.

Silene nutans (Caryophyllaceae) is a long-lived perennial rosette plant growing in dry, open grass communities of hillsides. It is described as gynomonoecious-gynodioecious, with female, gynomonoecious, and hermaphroditic individuals found in natural populations (Dufaÿ et al. 2010). This species is self-compatible, classified as rare and vulnerable, and is included in the regional Red list of endangered species from northern France. A mixedmating system may differentially impact the reproductive success of sexual phenotypes if inbreeding depression or pollen limitation occurs (Frankham et al. 2010). To analyse the population structure and mating system of this species, we therefore isolated and characterised for polymorphism 24 microsatellite markers and tested them for cross-amplification in eight additional Silene species that display a wide-range of reproductive systems.

Total genomic DNA from *S. nutans* was isolated using the NucleoSpin 96 plant II kit (Macherey-Nagel, Duren, Germany) following the manufacturer's protocol and sent to GenoScreen, Lille, France (www.genoscreen.fr). By coupling multiplex microsatellite enrichment and nextgeneration sequencing, 1 μ g was used for the development of microsatellite libraries through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries as

^{C. Godé · P. Touzet · H. Martin · E. Lahiani · J.-F. Arnaud (⊠)} Laboratoire de Génétique et Évolution des Populations
Végétales, UMR CNRS 8198, Bâtiment SN2, Université des Sciences et Technologies de Lille, Lille 1, 59655 Villeneuve d'Ascq Cedex, France e-mail: jean-francois.arnaud@univ-lille1.fr

Table 1 Nar (A_n) , the meanfor 24 polym	te, primer sequence $(5'-3')$, repeat motif from the 1 observed (H_o) and expected (H_e) heterozygosity, orphic microsatellite loci isolated in <i>S. mutans</i>	original sequen the mean intra-J	ce, anneal populatior	ing temperature (Tm) 1 fixation index (F_{1s})), allelic size range estimated over three	(bp), multi populatior	plex nu is (N =	imber, e = 36 ind	lye usec ividuals	I, the total m) and the acc	umber of allele ession number
Locus name	Primer sequences $(5'-3')$	Repeat motif	Tm	Allelic size range	Multiplex number	Dye	A_n H	, I	<i>H</i> _e	$F_{\rm IS}$	Accession no.
B09	F: AAGGGCACAAAATTGAGAAGG	$(AG)_9$	68/47 ^a	166–187	1	PET	15 0.	.463 (.716	0.317^{***}	KJ671551
H07	k: CCAAAGGIGAAGCICAIAIAAACC F: AAGCAAAACCCCTTATAAGCATC	(GA) ₂₄	68/47 ^a	169–221	1	NED	12 0	.667 (.680	0.060	KJ671555
	R: ACCTTTCCCCTTCCTCCTTT										
G0I	F: CCCTACCTCATAGCAACAAGC	(GA) ₉	68/47 ^a	276-331	1	VIC	30 0.	810 (.910	0.104^{**}	KJ671554
	R: CCTTCTCCTTCCTTTAACC										
E08	F: GTTGGTCGTTGGTAGTTCACAG	(TGTATG) ₈	68/47 ^a	224-347	1	6-FAM	13 0	352 (.441	0.267^{***}	KJ671553
	R: AATGCGAATCGGTCAATTTTAC										
D10	F: CGGGCTAAGTTTACAGCATCA	(CA) ₉	68/47 ^a	175-200	1	VIC	12 0	509 (.689	0.229*	KJ671552
	R: TGCCGTTATGCCATTCATTA										
SIL19	F: TTCTGAGAATTTGCACTTGAATC	(CTT) ₁₁	55	114-156	2	6-FAM	14 0.	806 (.818	0.019	KJ671563
	R: ACAAGTAACAATCTTATCCTCCATACT										
SIL24	F: AATGGGTGTTGGAGAGGGA	(TC) ₁₂	55	137-239	2	VIC	30 0.	903 (.920	0.011	KJ671564
	R: AAAGAACGGGAAGAAGGAGG										
SIL36	F: AGCGGAATCTACGATCTAAGGA	$(GTT)_{17}$	55	84-141	2	NED	17 0	.676 (.712	0.106	KJ671571
	R: TCACCTAGCAAACAAGGACAA										
SIL42	F: TTCCATCTITATTCTACCGATGTG	(CTT) ₂₁	55	97-159	2	PET	18 0	.741 (.878	0.246^{**}	KJ671574
	R: TTCCCTTACTGGCAATTTGG										
SIL16	F: GCCAAAACTAACAAGCAGCC	$(CAA)_{10}$	55	121-147	3	6-FAM	12 0	474 (.715	0.223*	KJ671561
	R: TTTTGGGATTAAGGCTGTGA										
SIL31	F: TTGCCCTATTCTTTTACCCAA	(TTG) ₁₅	55	155-212	3	VIC	12 0	.495 (.586	0.249*	KJ671569
	R: CGGACTTGTAAGGCCTGAAT										
SIL35	F: TCTGTGAATCTGTGATACTAACTGC	(AC) ₁₇	55	98-140	3	NED	18 0	.778 0	.868	0.067	KJ671570
	R: ACCTCTATCCCACCATGTCA										
SIL37	F: AAAGATGATTCATGTCAGGCG	$(TTG)_{17}$	55	166-231	3	PET	18 0	907 (.898	-0.016	KJ671572
	R: TGATGTTGGCCTGTACATTTC										
SIL15	F: ATGTGAATCTTATTAGATGGCAGG	$(GGA)_{10}$	55	194-221	4	6-FAM	9	282 (.576	0.423^{***}	KJ671560
	R: TCCCATTTGAACCTTGCATT										
SIL08	F: ACAAGTTTGGCTCAACTCGAA	(CTT) ₈	55	292-314	4	VIC	7 0	327 (.598	0.493^{***}	KJ671559
	R: GGTGTTGATTTGATGGGGGTT										
SIL03	F: AAGCTTCATCAAATGAAATCGG	$(AG)_8$	55	208-214	4	NED	4	375 (.444	0.114	KJ671557
	R: GGTGGAGGAGAAGACCACAG										
SIL18	F: TGCATAATTGTTCCCCAAATC	(TGT) ₁₁	55	116-168	5	FAM	12 0	351 (.569	0.419^{***}	KJ671562
	R: GGGGCATATTTGCCTAAACA										

🖄 Springer

Author's personal copy

Conservation Genet Resour (2014) 6:915-918

Author's personal copy

Touchdown PCR

Locus name	Primer sequences $(5'-3')$	Repeat motif	Tm	Allelic size range	Multiplex number	Dye	A_n	H_o	H _e i	r IS	Accession no.
SIL29	F: ACAGCAGACCTGGAAATTAGGA	(ATGT) ₁₄	55	125-168	5	VIC	L	0.156	0.485	0.821^{***}	KJ671567
	R: TGTGGAATGAGATTTGTGAGG										
SILOI	F: CATAAGGCAGCAAGTTTGGC	(AC) ₈	55	167 - 209	5	NED	18	0.819	0.784	-0.008	KJ671556
	R: GCCAATAAATTCTGGTGATTAGG										
SIL05	F: CATAAGCTCATTGGGGGCTTC	(TG) ₈	55	184-191	5	PET	5	0.430	0.577	0.298*	KJ671558
	R: CTAGAAATCCTGGTTCCGCC										
SIL41	F: AACAATCCAAACATTTCTTCCA	(AAC) ₂₁	55	97-137	5	PET	10	0.741	0.762	0.001	KJ671573
	R: TGAGGCCTTGTTCTTTCTA										
SIL26	F: AGCATGTCTTAATCATGGAGCA	(TTG) ₁₃	55	203-268	6	VIC	8	0.226	0.827	0.737***	KJ671565
	R: CGTGCAGAGGCTGAACTG										
SIL27	F: TGATTGCTTTGTTTCCACCA	(AAC) ₁₃	55	115-174	6	FAM	14	0.580	0.644	0.122	KJ671566
	R: CAAATTGTATACTACTGTCCATCTCCA										
SIL30	F: TTTTGGGTATTTTAAGAGTTAATGAGT	(TGT) ₁₅	55	136-253	6	NED	8	0.222	0.346	0.453*	KJ671568
	R: TCAACACTTTTCTCTTTTTATCATCA										
* $P < 0.05;$	** $P < 0.01$; *** $P < 0.001$										

Table 1 continued

described in Malausa et al. (2011). Briefly, total DNA was mechanically fragmented and enriched for TG, TC, AAC, AAG, AGG, ACG, ACAT and ACTC repeat motifs. Enriched fragments were subsequently amplified. PCR products were purified, quantified and GsFLX librairies were then carried out following manufacturer's protocols and sequenced on a GsFLX PTP. Of 74,387 randomly fragmented sequences, 438 sequences likely to contain suitable markers including microsatellite motif longer than five repeats were then returned.

Forward primers of the selected loci were labelled with 6-FAM, PET, NED, or VIC fluorescent dye (Applied biosystem). PCR reactions were performed separately for each locus in 10 µl volume containing 20 ng of genomic DNA, 1× multiplex PCR master mix (QIAGEN Hilden, Germany), and 0.1 µM of forward and reverse primer. The PCR cycling program had an initial denaturation of 95 °C for 15 min; 32 cycles of 94 °C for 30 s, annealing temperature (see Table 1) for 1 min, and 72 °C for 1 min 15 s; and a final extension at 60 °C for 30 min. For five markers (B09, H07, G01, E08 and D10 loci, see Table 1), we used a touchdown PCR-cycling program according to the conditions described in Godé et al. (2012). The PCR amplicons were subsequently electrophoresed and sized using an ABI PRISM 3130 Sequencer (Applied Biosystems) and the software GeneMapper version 4.0, respectively.

We tested the polymorphism of isolated suitable microsatellite markers on individuals coming from three populations of S. nutans located in Germany (N 49.228–E 7.016, n = 9 individuals; N 48.971–E 12.018, n = 9 individuals, respectively) and southern France (N 42.802–E 0.453, n = 18 individuals). Overall, 24 markers were polymorphic, and had easily readable chromatograms with no stutter peaks. Primer pairs were successfully combined into six multiplex ranging from three to five markers (Table 1). Basic parameters of genetic diversity were estimated using FSTAT, version 2.9.3 (Goudet 1995). The number of alleles varied from 5 to 30 among loci (mean = 5.458), for a total of 323 alleles observed. The mean observed (Ho) and mean expected heterozygosity (He) values ranged from 0.156 to 0.903 and from 0.346 to 0.920, respectively. As expected for a species thought to exhibit a mixedmating system, the fixation index F_{1s} was significant for 14 out 24 markers, with estimates ranging from -0.016to 0.821 for a mean multilocus value of 0.232 (± 0.050) . Out of 276 comparisons and after Bonferroni correction, no linkage disequilibrium was observed for any pairs of loci. Cross-species amplification was further examined among eight Silene species and was successful at 7-19 loci depending on the taxa (Table 2).

+(1)

+(3)

+(1)

+(2)

+(3)

+(1)

_

+(2)

+(3)

+(3)

+(1)

_

_

Table 2 Results of crossspecies amplification of 24 microsatellite loci in eight additional Silene species: no amplification (-); successful amplification (+) together with the observed number of alleles

Locus

name

B09

H07

G01 E08 D10 SIL19 SIL24 SIL36 SIL42 SIL16 SIL31 SIL35 SIL37 SIL15 SIL08 SIL03 SIL18 SIL29

Species	Silene acaulis (4)	Silene italica (16)	Silene latifolia (8)	Silene noctiflora (1)	Silene otites (6)	Silene paradoxa (8)	Silene vulgaris (8)	Silene scouleri (2)
	+ (6)	-	_	_	+ (4)	+ (5)	_	_
	+ (2)	-	_	+(1)	+(1)	+(2)	+(3)	_
	+ (6)	+(10)	_	-	+(6)	+(1)	-	-
	-	+(3)	_	-	_	+(2)	-	-
	+ (2)	+ (9)	+(1)	-	_	+ (1)	_	+(1)
	+ (6)	+(11)	-	-	+(1)	+(2)	-	-
	+ (2)	+ (5)	+(6)	+(1)	+ (9)	-	+ (3)	-
	+ (3)	+(1)	-	-	+(1)	+(1)	-	-
	+(1)	-	-	+(1)	_	-	-	-
	+ (2)	+(8)	+(2)	+(2)	+(6)	+ (4)	+ (2)	+(2)
	+ (2)	+ (3)	+(1)	+(1)	+ (2)	+ (3)	+(2)	+ (2)
	+ (2)	+(14)	_	-	+(1)	+(5)	+(1)	+(1)
	+ (7)	+ (2)	+ (2)	+ (2)	+(1)	+(1)	+(1)	+ (2)
	-	-	_	-	-	-	-	-
	+(1)	+ (4)	+(1)	-	+ (2)	+ (3)	-	-
	+ (2)	+(10)	+(11)	+(1)	+ (8)	+(1)	+ (4)	+(1)
	+(1)	_	_	-	-	-	-	-
	_	_	_	_	_	_	+(6)	_

+(1)

+(1)

The number of tested individuals is indicated next to the species' name

Acknowledgments This work was funded by the "Région Nord-Pas-de-Calais" and the "Fondation pour la Recherche en Biodiversité" (GENEFRAG project).

SIL01

SIL05

SIL41

SIL26

SIL27

SIL30

References

- Dufaÿ M, Lahiani E, Brachi B (2010) Gender variation and inbreeding depression in gynodioecious-gynomonoeicous Silene nutans. Int J Plant Sci 171:53-62
- Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

Godé C, Decombeix I, Kostecka A, Wasowicz P, Pauwels M, Courseaux A, Saumitou-Laprade P (2012) Nuclear microsatellite loci for Arabidopsis halleri (Brassicaceae), a model species to study plant adaptation to heavy metals. Am J Bot 99:e49-e52

+(1)

+(5)

+(2)

+(1)

+(6)

+(1)

+(6)

- Goudet J (1995) FSTAT (version 1.2). A computer program to calculate F-statistics. J Hered 86:485-486
- Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Délye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Malé P-J, Ferreira S, Martin J-F (2011) Highthroughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol Ecol Res 11:638-644

+(2)

+(3)

_

+(1)